hxtorch
Modules
Classes
Path to a calibration. |
|
Path to a hardware database. |
Functions
-
hxtorch.
dense_spikes_to_list
(spikes: Tuple[numpy.ndarray[numpy.int32], numpy.ndarray[numpy.float32]], input_size: int) → List[List[List[float]]]
-
hxtorch.
extract_n_spikes
(data: _pygrenade_vx_signal_flow.OutputData, network_graph: _pygrenade_vx_network.NetworkGraph, runtime: int, n_spikes: Dict[_pygrenade_vx_network.PopulationOnNetwork, int]) → Dict[_pygrenade_vx_network.PopulationOnNetwork, Tuple[numpy.ndarray[numpy.int32], numpy.ndarray[numpy.float32]]]
-
hxtorch.
get_unique_identifier
(hwdb_path: Optional[hxtorch::core::HWDBPath] = None) → str Return the unique identifier of the chip with the initialized connection.
@param hwdb_path Optional path to the hwdb to use @return The identifier as string
-
hxtorch.
init_hardware
(*args, **kwargs) Overloaded function.
init_hardware(hwdb_path: Optional[hxtorch::core::HWDBPath] = None, ann: bool = False) -> None
Initialize the hardware automatically from the environment.
@param hwdb_path Optional path to the hwdb to use @param spiking Boolean flag indicating whether spiking or non-spiking calibration is loaded
init_hardware(calibration_path: hxtorch::core::CalibrationPath) -> None
Initialize the hardware with calibration path.
@param calibration_path Calibration path to load from
-
hxtorch.
init_hardware_minimal
() → None Initialize automatically from the environment without ExperimentInit and without any calibration.
-
hxtorch.
release_hardware
() → None Release hardware resource.
-
hxtorch.
weight_to_connection
(*args, **kwargs) Overloaded function.
weight_to_connection(weight: numpy.ndarray[numpy.int32]) -> List[_pygrenade_vx_network.Projection.Connection]
weight_to_connection(weight: numpy.ndarray[numpy.int32], connections: List[List[int]]) -> List[_pygrenade_vx_network.Projection.Connection]