hxtorch.spiking

Modules

hxtorch.spiking.backend

hxtorch.spiking.datasets

hxtorch.spiking.execution_instance

Definition of ExecutionInstance, wrapping grenade.common.ExecutionInstanceID, and providing functionality for chip instance configuration

hxtorch.spiking.experiment

Defining basic types to create hw-executable instances

hxtorch.spiking.functional

hxtorch.spiking.handle

Defining tensor handles able to hold references to tensors for lazy assignment after hardware data acquisition

hxtorch.spiking.modules

hxtorch.spiking.morphology

User defined neuron morphologies.

hxtorch.spiking.neuron_placement

Defining neuron placement allocator

hxtorch.spiking.observables

Hardware observables object

hxtorch.spiking.run(experiment, runtime)

Execute the given experiment.

hxtorch.spiking.transforms

hxtorch.spiking.utils

Classes

BatchDropout(size, dropout, experiment, …)

Batch dropout layer

ExecutionInstance(calib_path, str]] = None, …)

Experiment(mock, dt[, hw_routing_func])

Experiment class for describing experiments on hardware

HXBaseExperimentModule(experiment)

HXModule(experiment, func, …)

PyTorch module supplying basic functionality for elements of SNNs that do have a representation on hardware

HXModuleWrapper(experiment, modules, func)

Class to wrap HXModules

IAFNeuron(size, experiment, func, …[, …])

Integrate-and-fire neuron Caveat: For execution on hardware, this module can only be used in conjunction with a preceding Synapse module.

InputNeuron(size, experiment, execution_instance)

Spike source generating spikes at the times [ms] given in the spike_times array.

Neuron(size, experiment, func, …[, …])

Neuron layer

NeuronHandle(spikes, v_cadc, current, v_madc)

Specialization for HX neuron observables

ReadoutNeuron(size, experiment, func, …)

Readout neuron layer

ReadoutNeuronHandle(v_cadc, current, v_madc)

Specialization for HX neuron observables

SparseSynapse(connections, experiment, func, …)

Sparse synapse layer

Synapse(in_features, out_features, …)

Synapse layer

SynapseHandle(graded_spikes)

Specialization for HX synapses

TensorHandle()

Base class for HX tensor handles.

Functions

hxtorch.spiking.run(experiment: hxtorch.spiking.experiment.Experiment, runtime: Optional[int])Optional[_pygrenade_vx_signal_flow.ExecutionTimeInfo]

Execute the given experiment.

TODO: Why is this a standalone function?

Parameters
  • experiment – The experiment representing the computational graph to be executed on hardware and/or in software.

  • runtime – Only relevant for hardware experiments. Indicates the runtime resolved with experiment.dt.