jaxsnn.base.root_solving

Functions

jaxsnn.base.root_solving.bisection(f, x_min, x_max, tol)

Bisection root finding method

Based on the intermediate value theorem, which guarantees for a continuous function that there is a zero in the interval [x_min, x_max] as long as sign(f(x_min)) != sign(f(x_max)).

NOTE: We do not check the precondition sign(f(x_min)) != sign(f(x_max))

jaxsnn.base.root_solving.linear_interpolated_root(f_a, f_b, a, b)
jaxsnn.base.root_solving.linear_interpolation(f_a, f_b, a, b, x)
jaxsnn.base.root_solving.newton_1d(f, x0)
jaxsnn.base.root_solving.newton_nd(f, x0)