jaxsnn.event.from_nir_data.TimeGriddedData

class jaxsnn.event.from_nir_data.TimeGriddedData(data: numpy.ndarray, dt: float)

Bases: object

Either boolean entries indicate whether a binary event is present at a particular time step, or a real-valued signal provides the measurement of a quantity (e.g. the membrane potential).

datanp.ndarray, shape (n_samples, n_time_steps, n_neurons)

Input data. For binary data the dtype should be bool.

dt: float

Time step size.

__init__(data: numpy.ndarray, dt: float)None

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(data, dt)

Initialize self.

to_event(n_events[, time_shift])

Arguments

Attributes

n_neurons

n_samples

n_time_steps

shape

t_max

data: numpy.ndarray
dt: float
property n_neurons
property n_samples
property n_time_steps
property shape
property t_max
to_event(n_events: int, time_shift: float = 0.0)nir.data_ir.graph.EventData
n_spikesint

Maximum number of events stored for each neuron.

time_shiftfloat, optional

Shift the event times by this value from the beginning of each time step. Must be in interval [0, dt). Default is 0.0.