jaxsnn.event.from_nir_data.TimeGriddedData
-
class
jaxsnn.event.from_nir_data.TimeGriddedData(data: numpy.ndarray, dt: float) Bases:
objectEither boolean entries indicate whether a binary event is present at a particular time step, or a real-valued signal provides the measurement of a quantity (e.g. the membrane potential).
- datanp.ndarray, shape (n_samples, n_time_steps, n_neurons)
Input data. For binary data the dtype should be bool.
- dt: float
Time step size.
-
__init__(data: numpy.ndarray, dt: float) → None Initialize self. See help(type(self)) for accurate signature.
Methods
__init__(data, dt)Initialize self.
to_event(n_events[, time_shift])Arguments
Attributes
-
data: numpy.ndarray
-
dt: float
-
property
n_neurons
-
property
n_samples
-
property
n_time_steps
-
property
shape
-
property
t_max
-
to_event(n_events: int, time_shift: float = 0.0) → nir.data_ir.graph.EventData - n_spikesint
Maximum number of events stored for each neuron.
- time_shiftfloat, optional
Shift the event times by this value from the beginning of each time step. Must be in interval [0, dt). Default is 0.0.