jaxsnn.event.stepping
Modules
|
Find next spike (external or internal), and simulate to that point. |
Functions
-
jaxsnn.event.stepping.
step
(dynamics: Callable, tr_dynamics: Callable, t_max: float, solver: Callable[[jaxsnn.event.types.LIFState, float, float], jaxsnn.event.types.Spike], step_input: Tuple[jaxsnn.event.types.StepState, Union[jaxsnn.event.types.WeightInput, jaxsnn.event.types.WeightRecurrent], int], *args: int) → Tuple[Tuple[jaxsnn.event.types.StepState, Union[jaxsnn.event.types.WeightInput, jaxsnn.event.types.WeightRecurrent], int], jaxsnn.event.types.EventPropSpike] Find next spike (external or internal), and simulate to that point.
- Args:
dynamics (Callable): Function describing the continuous neuron dynamics tr_dynamics (Callable): Function describing the transition dynamics t_max (float): Max time until which to run solver (Solver): Parallel root solver which returns the next event state (StepInput): (StepState, weights, int)
- Returns:
Tuple[StepInput, Spike]: New state after transition and stored spike
-
jaxsnn.event.stepping.
step_existing
(dynamics: Callable, tr_dynamics: Callable, t_max: float, event_stepper: Callable[[jaxsnn.event.types.LIFState, float, float], jaxsnn.event.types.Spike], step_input: Tuple[jaxsnn.event.types.StepState, Union[jaxsnn.event.types.WeightInput, jaxsnn.event.types.WeightRecurrent], int], *args: int) → Tuple[Tuple[jaxsnn.event.types.StepState, Union[jaxsnn.event.types.WeightInput, jaxsnn.event.types.WeightRecurrent], int], jaxsnn.event.types.EventPropSpike] Find next spike (external or internal), and simulate to that point.
- Parameters
dynamics – Function describing the continuous neuron dynamics
tr_dynamics – Function describing the transition dynamics
t_max – Max time until which to run
solver – Parallel root solver which returns the next event
state – (StepState, weights, int)
- Returns
New state after transition and stored spike