hxtorch.spiking.experiment.ExecutionInstance

class hxtorch.spiking.experiment.ExecutionInstance(calib_path: Optional[Union[pathlib.Path, str]] = None, input_loopback: bool = False)

Bases: hxtorch.spiking.execution_instance.BaseExecutionInstance

__init__(calib_path: Optional[Union[pathlib.Path, str]] = None, input_loopback: bool = False)None
Parameters

input_loopback – Record input spikes and use them for gradient calculation. Depending on link congestion, this may or may not be beneficial for the calculated gradient’s precision.

Methods

__init__([calib_path, input_loopback])

param input_loopback

Record input spikes and use them for gradient

cadc_recordings()

Return the instance’s CADCRecording object, holding all neurons that are to be recorded in this instance.

generate_playback_hooks()

Handle config injected into grenade (not supported yet).

load_calib([calib_path])

Load a calibration from path calib_path and apply to the experiment’s chip object.

prepare_static_config()

Prepare the static configuration of the instance

Attributes

cadc_recordings()_pygrenade_vx_network.CADCRecording

Return the instance’s CADCRecording object, holding all neurons that are to be recorded in this instance.

Returns

The grenade.network.CADCRecoding object

generate_playback_hooks()_pygrenade_vx_signal_flow.ExecutionInstanceHooks

Handle config injected into grenade (not supported yet).

Returns

Returns the execution instance’s (empty) playback hooks injected into grenade.run.

load_calib(calib_path: Optional[Union[pathlib.Path, str]] = None)

Load a calibration from path calib_path and apply to the experiment’s chip object. If no path is specified a nightly calib is applied.

Parameters

calib_path – The path to the calibration. It None, the nightly calib is loaded.

Returns

Returns the chip object for the given calibration.

prepare_static_config()

Prepare the static configuration of the instance