hxtorch.spiking.functional
Modules
Custom BatchDropout function |
|
Integrate and fire neurons |
|
Leaky-integrate neurons |
|
Leaky-integrate and fire neurons |
|
|
Wrap linear to allow signature inspection |
Refractory update for neurons with refractory behaviour |
|
Define different input spike sources |
|
Surrograte gradient for SuperSpike. |
|
|
Selection of the used threshold function. :param input: Input tensor to threshold function. :param method: The string indicator of the the threshold function. Currently supported: ‘super_spike’. :param alpha: Parameter controlling the slope of the surrogate derivative in case of ‘superspike’. :return: Returns the tensor of the threshold function. |
Autograd function to ‘unterjubel’ (german for ‘inject’) hardware observables and allow correct gradient back-propagation. |
Classes
|
Define gradient using adjoint code (EventProp) from norse |
|
Synapse function for proper gradient transport when using EventPropNeuron. |
|
Define Surrogate Gradient ‘SuperSpike’ (negative side of Fast Sigmoid) See: https://arxiv.org/abs/1705.11146 |
Functions
-
hxtorch.spiking.functional.
batch_dropout
(input: torch.Tensor, mask: torch.Tensor) → torch.Tensor Applies a dropout mask to a batch of inputs.
- Parameters
input – The input tensor to apply dropout to.
mask – The dropout mask. Entires in the mask which are False will disable their corresponding entry in input.
- Returns
The input tensor with dropout mask applied.
-
hxtorch.spiking.functional.
cuba_iaf_integration
(input: torch.Tensor, *, reset: torch.Tensor, threshold: torch.Tensor, tau_syn: torch.Tensor, tau_mem: torch.Tensor, method: torch.Tensor, alpha: torch.Tensor, hw_data: Optional[torch.Tensor] = None, dt: float = 1e-06) → Tuple[torch.Tensor, torch.Tensor] Leaky-integrate and fire neuron integration for realization of simple spiking neurons with exponential synapses. Integrates according to:
v^{t+1} = dt / au_{men} * (v_l - v^t + i^t) + v^t i^{t+1} = i^t * (1 - dt / au_{syn}) + x^t z^{t+1} = 1 if v^{t+1} > params.threshold v^{t+1} = v_reset if z^{t+1} == 1
Assumes i^0, v^0 = 0., params.reset :note: One dt synaptic delay between input and output
- Parameters
input – Input tensor holding ‘graded_spikes’ in shape (batch, time, neurons).
reset – The reset voltage as torch.Tensor.
threshold – The threshold voltage as torch.Tensor.
tau_syn – The synaptic time constant as torch.Tensor.
tau_mem – The membrane time constant as torch.Tensor.
method – The method used for the surrogate gradient, e.g., ‘superspike’.
alpha – The slope of the surrogate gradient in case of ‘superspike’.
hw_data – An optional tuple holding optional hardware observables in the order (spikes, membrane_cadc, membrane_madc).
dt – Integration step width.
- Returns
Returns tuple of tensors with membrane traces, spikes and synaptic current. Tensors are of shape (batch, time, neurons).
-
hxtorch.spiking.functional.
cuba_li_integration
(input: torch.Tensor, *, leak: torch.Tensor, tau_syn: torch.Tensor, tau_mem: torch.Tensor, hw_data: Optional[torch.Tensor] = None, dt: float = 1e-06) → torch.Tensor Leaky-integrate neuron integration for realization of readout neurons with exponential synapses. Integrates according to:
v^{t+1} = dt / au_{mem} * (v_l - v^t + i^t) + v^t i^{t+1} = i^t * (1 - dt / au_{syn}) + x^t
Assumes i^0, v^0 = 0. :note: One dt synaptic delay between input and output
- Parameters
input – Input graded spike tensor of shape (batch, time, neurons).
leak – The leak voltage as torch.Tensor.
tau_syn – The synaptic time constant as torch.Tensor.
tau_mem – The membrane time constant as torch.Tensor.
hw_data – An optional tuple holding optional hardware observables in the order (None, membrane_cadc, membrane_madc).
dt – Integration step width
- Returns
Returns the membrane trace in shape (batch, time, neurons).
-
hxtorch.spiking.functional.
cuba_lif_integration
(input: torch.Tensor, *, leak: torch.Tensor, reset: torch.Tensor, threshold: torch.Tensor, tau_syn: torch.Tensor, tau_mem: torch.Tensor, method: torch.Tensor, alpha: torch.Tensor, hw_data: Optional[torch.Tensor] = None, dt: float = 1e-06) → Tuple[torch.Tensor, …] Leaky-integrate and fire neuron integration for realization of simple spiking neurons with exponential synapses. Integrates according to:
i^{t+1} = i^t * (1 - dt / au_{syn}) + x^t v^{t+1} = dt / au_{men} * (v_l - v^t + i^t) + v^t z^{t+1} = 1 if v^{t+1} > params.threshold v^{t+1} = params.reset if z^{t+1} == 1
Assumes i^0, v^0 = 0, v_leak :note: One dt synaptic delay between input and output
TODO: Issue 3992
- Parameters
input – Tensor holding ‘graded_spikes’ in shape (batch, time, neurons).
leak – The leak voltage as torch.Tensor.
reset – The reset voltage as torch.Tensor.
threshold – The threshold voltage as torch.Tensor.
tau_syn – The synaptic time constant as torch.Tensor.
tau_mem – The membrane time constant as torch.Tensor.
method – The method used for the surrogate gradient, e.g., ‘superspike’.
alpha – The slope of the surrogate gradient in case of ‘superspike’.
hw_data – An optional tuple holding optional hardware observables in the order (spikes, membrane_cadc, membrane_madc).
dt – Integration step width.
- Returns
Returns tuple holding tensors with membrane traces, spikes and synaptic current. Tensors are of shape (batch, time, neurons).
-
hxtorch.spiking.functional.
cuba_refractory_iaf_integration
(input: torch.Tensor, *, reset: torch.Tensor, threshold: torch.Tensor, tau_syn: torch.Tensor, tau_mem: torch.Tensor, refractory_time: torch.Tensor, method: torch.Tensor, alpha: torch.Tensor, hw_data: Optional[torch.Tensor] = None, dt: float = 1e-06) → Tuple[torch.Tensor, torch.Tensor] Integrate and fire neuron integration for realization of simple spiking neurons with exponential synapses and refractory period. Integrates according to:
v^{t+1} = dt / au_{men} * i^t + v^t i^{t+1} = i^t * (1 - dt / au_{syn}) + x^t z^{t+1} = 1 if v^{t+1} > params.v_th v^{t+1} = params.v_reset if z^{t+1} == 1 or ref^t > 0 ref^{t+1} -= 1 ref^{t+1} = params.tau_ref if z^{t+1} == 1
Assumes i^0, v^0 = 0., v_reset :note: One dt synaptic delay between input and output
- Parameters
input – SynapseHandle holding graded_spikes in shape (batch, time, neurons).
reset – The reset voltage as torch.Tensor.
threshold – The threshold voltage as torch.Tensor.
tau_syn – The synaptic time constant as torch.Tensor.
tau_mem – The membrane time constant as torch.Tensor.
refractory_time – The refractory time constant as torch.Tensor.
method – The method used for the surrogate gradient, e.g., ‘superspike’.
alpha – The slope of the surrogate gradient in case of ‘superspike’.
hw_data – An optional tuple holding optional hardware observables in the order (spikes, membrane_cadc, membrane_madc).
dt – Integration step width.
- Returns
Returns NeuronHandle holding tensors with membrane traces, spikes and synaptic current. Tensors are of shape (batch, time, neurons).
-
hxtorch.spiking.functional.
cuba_refractory_lif_integration
(input: torch.Tensor, *, leak: torch.Tensor, reset: torch.Tensor, threshold: torch.Tensor, tau_syn: torch.Tensor, tau_mem: torch.Tensor, refractory_time: torch.Tensor, method: torch.Tensor, alpha: torch.Tensor, hw_data: Optional[torch.Tensor] = None, dt: float = 1e-06) → Tuple[torch.Tensor, …] Leaky-integrate and fire neuron integration for realization of simple spiking neurons with exponential synapses and refractory period.
- Integrates according to:
i^{t+1} = i^t * (1 - dt / au_{syn}) + x^t v^{t+1} = dt / au_{men} * (v_l - v^t + i^{t+1}) + v^t z^{t+1} = 1 if v^{t+1} > params.v_th v^{t+1} = params.v_reset if z^{t+1} == 1 or ref^{t+1} > 0 ref^{t+1} = params.tau_ref ref^{t+1} -= 1
Assumes i^0, v^0 = 0.
- Parameters
input – Tensor holding ‘graded_spikes’ in shape (batch, time, neurons).
leak – The leak voltage as torch.Tensor.
reset – The reset voltage as torch.Tensor.
threshold – The threshold voltage as torch.Tensor.
tau_syn – The synaptic time constant as torch.Tensor.
tau_mem – The membrane time constant as torch.Tensor.
refractory_time – The refractory time constant as torch.Tensor.
method – The method used for the surrogate gradient, e.g., ‘superspike’.
alpha – The slope of the surrogate gradient in case of ‘superspike’.
hw_data – An optional tuple holding optional hardware observables in the order (spikes, membrane_cadc, membrane_madc).
dt – Integration step width.
- Returns
Returns tuple holding tensors with membrane traces, spikes and synaptic current. Tensors are of shape (batch, time, neurons).
-
hxtorch.spiking.functional.
input_neuron
(input: torch.Tensor, hw_data: Optional[torch.Tensor] = None) → hxtorch.spiking.handle.NeuronHandle Input neuron, forwards spikes without modification in non-hardware runs but injects loop-back recorded spikes if available.
- Parameters
input – Input spike tensor.
hw_data – Loop-back spikes, if available.
- Returns
Returns the input spike tensor.
-
hxtorch.spiking.functional.
linear
(input: torch.Tensor, weight: torch.nn.parameter.Parameter, bias: Optional[torch.nn.parameter.Parameter] = None) → torch.Tensor Wrap linear to allow signature inspection
-
hxtorch.spiking.functional.
linear_exponential_clamp
(inputs: torch.Tensor, weight: torch.nn.parameter.Parameter, bias: Optional[torch.nn.parameter.Parameter] = None, cap: float = 1.5, start_weight: float = 61.0, quantize: bool = False) → torch.Tensor Clamps the weights with an exponential roll-off towards saturation.
- Parameters
input – The input neuron tensor holding spikes to be multiplied with the params tensor weight.
weight – Weight Tensor to be clamped.
bias – The bias of the linear operation.
cap – Upper resp. -1 * lower boundary of the weights. Choose this value to be 1 / weight_scaling (see hxtorch.spiking.Synapse) to saturate the software weights where theirs scaled values saturate on hardware.
start_weight – Indicating at which hardware-weight the roll off begins. Has to be in range (0, 63).
quantize – If true, the weights are rounded to multiples of cap / 63 to match the discrete hardware representation.
- Returns
Clamped weights and possibly rounded weights
-
hxtorch.spiking.functional.
linear_sparse
(input: torch.Tensor, weight: torch.nn.parameter.Parameter, connections: Optional[torch.Tensor] = None, bias: Optional[torch.nn.parameter.Parameter] = None) → torch.Tensor Wrap linear to allow signature inspection. Disable inactive connections in weight tensor.
- Parameters
input – The input neuron tensor holding spikes to be multiplied with the params tensor weight.
weight – The weight parameter tensor. This tensor is expected to be dense since pytorch, see issue: 4039.
bias – The bias of the linear operation.
connections – A dense boolean connection mask indicating active connections. If None, the weight tensor remains untouched.
-
hxtorch.spiking.functional.
threshold
(input: torch.Tensor, method: str, alpha: float) → torch.Tensor Selection of the used threshold function. :param input: Input tensor to threshold function. :param method: The string indicator of the the threshold function.
Currently supported: ‘super_spike’.
- Parameters
alpha – Parameter controlling the slope of the surrogate derivative in case of ‘superspike’.
- Returns
Returns the tensor of the threshold function.