hxtorch.spiking.modules

Modules

hxtorch.spiking.modules.batch_dropout

Implementing BatchDropout Module

hxtorch.spiking.modules.hx_module

Implementing the base module HXModule

hxtorch.spiking.modules.hx_module_wrapper

Implementing a module wrapper to wrap multiple modules as one

hxtorch.spiking.modules.input_neuron

Implementing input neuron module

hxtorch.spiking.modules.neuron

Implementing SNN modules

hxtorch.spiking.modules.sparse_synapse

Implementing SNN modules

hxtorch.spiking.modules.synapse

Implementing SNN modules

hxtorch.spiking.modules.types

Define module types

Classes

AELIF(size, experiment, leak, reset, …)

Layer of neurons with configurable dynamics up to adaptive exponential leaky integrate-and-fire complexity.

BatchDropout(size, dropout, experiment)

Batch dropout layer

EventPropLIF(size, experiment, leak, reset, …)

EventPropSynapse(in_features, out_features, …)

HXBaseExperimentModule(experiment)

HXModule(experiment, execution_instance, …)

PyTorch module supplying basic functionality for elements of SNNs that do have a representation on hardware

HXModuleWrapper(experiment, **modules)

Class to wrap HXModules

InputNeuron(size, experiment, …)

Spike source generating spikes at the times [ms] given in the spike_times array.

InputPopulation(size, experiment, …)

Base type for external input populations

LI(size, experiment, leak, tau_mem, tau_syn, …)

Layer of leaky integrator neurons

LIF(size, experiment, leak, reset, …)

Layer of leaky integrate-and-fire neurons.

NeuronExp(size, experiment, leak, reset, …)

Neuron layer with exponential Euler intergration scheme.

Population(size, experiment, …)

Base class for on-chip populations on BSS-2

Projection(in_features, out_features, …)

Base class for projections on BSS-2

ReadoutNeuronExp(size, experiment, leak, …)

Neuron layer with exponential Euler intergration scheme.

SparseSynapse(connections, experiment, …)

Sparse synapse layer

Synapse(in_features, out_features, …)

Synapse layer