hxtorch.spiking.utils.to_nir.SNN
-
class
hxtorch.spiking.utils.to_nir.SNN(dt: float = 1e-06, mock: bool = True, device: torch.device = device(type='cpu')) Bases:
torch.nn.modules.module.ModuleBase SNN class for to-NIR conversion. It is necessary to define the forward pass.
-
__init__(dt: float = 1e-06, mock: bool = True, device: torch.device = device(type='cpu')) → None Initialize the SNN.
- Parameters
dt – Time-binning width.
mock – Indicating whether to train in software (True) or on hardware (False).
Methods
__init__([dt, mock, device])Initialize the SNN.
forward(spikes)Perform a forward pass.
Attributes
-
forward(spikes: torch.Tensor) → torch.Tensor Perform a forward pass. To use the SNN class for to-NIR conversion, it is necessary to define the forward pass.
- Parameters
spikes – torch.Tensor holding spikes as input.
- Returns
Returns the output of the network, i.e. membrane traces of the readout neurons.
-