hxtorch.spiking.ConversionConfig

class hxtorch.spiking.ConversionConfig(dt: float = 1e-06, calib_path: str = None, weight_scale: float = 64.0, trace_scale: float = 0.02, trace_shift: float = 0.0, cadc_recording: bool = True, mock: bool = True, input_loopback: bool = True, device: torch.device = <factory>)

Bases: object

Configuration for the conversion of NIRGraph to hxtorch SNN.

Some parameters are a dict with node names as keys such that the parametrization for each layer can be set individually.

__init__(dt: float = 1e-06, calib_path: str = None, weight_scale: float = 64.0, trace_scale: float = 0.02, trace_shift: float = 0.0, cadc_recording: bool = True, mock: bool = True, input_loopback: bool = True, device: torch.device = <factory>)None

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([dt, calib_path, weight_scale, …])

Initialize self.

Attributes

cadc_recording

calib_path

dt

input_loopback

mock

trace_scale

trace_shift

weight_scale

cadc_recording: bool = True
calib_path: str = None
device: torch.device
dt: float = 1e-06
input_loopback: bool = True
mock: bool = True
trace_scale: float = 0.02
trace_shift: float = 0.0
weight_scale: float = 64.0