hxtorch.spiking.ExecutionInstance
-
class
hxtorch.spiking.
ExecutionInstance
(calib_path: Optional[Union[pathlib.Path, str]] = None, input_loopback: bool = False) Bases:
hxtorch.spiking.execution_instance.BaseExecutionInstance
-
__init__
(calib_path: Optional[Union[pathlib.Path, str]] = None, input_loopback: bool = False) → None - Parameters
input_loopback – Record input spikes and use them for gradient calculation. Depending on link congestion, this may or may not be beneficial for the calculated gradient’s precision.
Methods
__init__
([calib_path, input_loopback])- param input_loopback
Record input spikes and use them for gradient
Return the instance’s
CADCRecording
object, holding all neurons that are to be recorded in this instance.Handle config injected into grenade (not supported yet).
load_calib
([calib_path])Load a calibration from path
calib_path
and apply to the experiment’s chip object.Prepare the static configuration of the instance
Attributes
-
cadc_recordings
() → _pygrenade_vx_network.CADCRecording Return the instance’s
CADCRecording
object, holding all neurons that are to be recorded in this instance.- Returns
The
grenade.network.CADCRecoding
object
-
generate_playback_hooks
() → _pygrenade_vx_signal_flow.ExecutionInstanceHooks Handle config injected into grenade (not supported yet).
- Returns
Returns the execution instance’s (empty) playback hooks injected into
grenade.run
.
-
load_calib
(calib_path: Optional[Union[pathlib.Path, str]] = None) Load a calibration from path
calib_path
and apply to the experiment’s chip object. If no path is specified a nightly calib is applied.- Parameters
calib_path – The path to the calibration. It None, the nightly calib is loaded.
- Returns
Returns the chip object for the given calibration.
-
prepare_static_config
() Prepare the static configuration of the instance
-