hxtorch.spiking.functional.lif.Unterjubel
- 
class hxtorch.spiking.functional.lif.Unterjubel(*args, **kwargs)
- Bases: - torch.autograd.function.Function- Unterjubel hardware observables to allow correct gradient flow - 
__init__(*args, **kwargs)
- Initialize self. See help(type(self)) for accurate signature. 
 - Methods - backward(ctx, grad_output)- Backward the gradient. - forward(ctx, input, input_prime)- Returns input_prime instead of input to inject input_prime but direct the gradient to input. - Attributes - 
static backward(ctx: torch.Tensor, grad_output: torch.Tensor) → Tuple[Optional[torch.Tensor, None], …]
- Backward the gradient. - Parameters
- grad_output – The backwarded gradient. 
- Returns
- Returns simply the back-propagated gradient at first position. 
 
 - 
static forward(ctx, input: torch.Tensor, input_prime: torch.Tensor) → torch.Tensor
- Returns input_prime instead of input to inject input_prime but direct the gradient to input. - Parameters
- input – Input tensor. 
- input_prime – The returned tensor. 
 
- Returns
- Returns the primed tensor. Thereby, this tensor is forwarded while the gradient is directed to to input. 
 
 
-