hxtorch.spiking.modules.input_neuron.Population
-
class
hxtorch.spiking.modules.input_neuron.
Population
(size: int, experiment: Experiment, func: Union[Callable, torch.autograd.Function], execution_instance: Optional[ExecutionInstance] = None) Bases:
hxtorch.spiking.modules.hx_module.HXModule
Base class for populations on BSS-2
-
__init__
(size: int, experiment: Experiment, func: Union[Callable, torch.autograd.Function], execution_instance: Optional[ExecutionInstance] = None) → None - Parameters
size – Number of input neurons.
experiment – Experiment to append layer to.
execution_instance – Execution instance to place to.
func – Callable function implementing the module’s forward functionality or a torch.autograd.Function implementing the module’s forward and backward operation. TODO: Inform about func args
Methods
__init__
(size, experiment, func[, …])- param size
Number of input neurons.
calibration_from_params
(spiking_calib_target)Add population specific calibration targets to the experiment-wide calibration target, which holds information for all populations.
Add additional information
params_from_calibration
(spiking_calib_target)Attributes
-
calib_changed_since_last_run
() → bool
-
calibration_from_params
(spiking_calib_target: SpikingCalibTarget) → Dict Add population specific calibration targets to the experiment-wide calibration target, which holds information for all populations.
- Parameters
spiking_calib_target – Calibration target parameters of all neuron populations registered in the self.experiment instance.
- Returns
The chip_wide_calib_target with adjusted parameters.
-
extra_args
: Tuple[Any]
-
extra_kwargs
: Dict[str, Any]
-
extra_repr
() → str Add additional information
-
params_from_calibration
(spiking_calib_target: SpikingCalibTarget) → None
-
size
: int
-
training
: bool
-