hxtorch.spiking.modules.synapse.EventPropSynapse
- 
class hxtorch.spiking.modules.synapse.EventPropSynapse(in_features: int, out_features: int, experiment: Experiment, execution_instance: Optional[ExecutionInstance] = None, chip_coordinate: Optional[DLSGlobal] = None, device: str = None, dtype: Type = None, transform: Callable = <function linear_saturating>)
- Bases: - hxtorch.spiking.modules.synapse.Synapse- 
__init__(in_features: int, out_features: int, experiment: Experiment, execution_instance: Optional[ExecutionInstance] = None, chip_coordinate: Optional[DLSGlobal] = None, device: str = None, dtype: Type = None, transform: Callable = <function linear_saturating>) → None
- TODO: Think about what to do with device here. - Parameters
- in_features – Size of input dimension. 
- out_features – Size of output dimension. 
- device – Device to execute on. Only considered in mock-mode. 
- dtype – Data type of weight tensor. 
- experiment – Experiment to append layer to. 
- execution_instance – Execution instance to place to. 
- chip_coordinate – Chip coordinate this module is placed on. 
 
 
 - Methods - forward_func(input)- Attributes - 
forward_func(input: types.Handle_current_membrane_cadc_membrane_madc_spikes) → types.Handle_graded_spikes
 
-