hxtorch.spiking.modules.types.Population
- 
class 
hxtorch.spiking.modules.types.Population(size: int, experiment: Experiment, execution_instance: Optional[ExecutionInstance] = None, chip_coordinate: Optional[DLSGlobal] = None, **hxparams: Dict[str, ModuleParameterType]) Bases:
hxtorch.spiking.modules.types.BasePopulationBase class for on-chip populations on BSS-2
- 
__init__(size: int, experiment: Experiment, execution_instance: Optional[ExecutionInstance] = None, chip_coordinate: Optional[DLSGlobal] = None, **hxparams: Dict[str, ModuleParameterType]) → None - Parameters
 size – Number of input neurons.
experiment – Experiment to append layer to.
execution_instance – Execution instance to place to.
chip_coordinate – Chip coordinate this module is placed on.
Methods
__init__(size, experiment[, …])- param size
 Number of input neurons.
calibration_from_params(targets, neurons)Add population specific calibration targets to the experiment-wide calibration target, which holds information for all populations.
Add additional information
Check whether population has trainable parameters.
params_from_calibration(targets, neurons)set_trainable_params(chip)Attributes
- 
calib_changed_since_last_run() → bool 
- 
calibration_from_params(targets: SpikingCalibTarget, neurons) → SpikingCalibTarget Add population specific calibration targets to the experiment-wide calibration target, which holds information for all populations.
- Parameters
 spiking_calib_target – Calibration target parameters of all neuron populations registered in the self.experiment instance.
- Returns
 The chip_wide_calib_target with adjusted parameters.
- 
extra_repr() → str Add additional information
- 
has_trainable_params() → bool Check whether population has trainable parameters.
- 
params_dict() → Dict 
- 
params_from_calibration(targets: SpikingCalibTarget, neurons) → None 
- 
set_trainable_params(chip) 
- 
size: int 
- 
training: bool 
-